Augmented self-concordant barriers and nonlinear optimization problems with finite complexity

نویسندگان

  • Yurii Nesterov
  • Jean-Philippe Vial
چکیده

In this paper we study special barrier functions for the convex cones, which are the sum of a self-concordant barrier for the cone and a positive-semidefinite quadratic form. We show that the central path of these augmented barrier functions can be traced with linear speed. We also study the complexity of finding the analytic center of the augmented barrier. This problem itself has some interesting applications. We show that for some special classes of quadratic forms and some convex cones, the computation of the analytic center requires an amount of operations independent on the particular data set. We argue that these problems form a class that is endowed with a property which we call finite polynomial complexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving complexity of structured convex optimization problems using self-concordant barriers

The purpose of this paper is to provide improved complexity results for several classes of structured convex optimization problems using to the theory of self-concordant functions developed in [11]. We describe the classical short-step interior-point method and optimize its parameters in order to provide the best possible iteration bound. We also discuss the necessity of introducing two paramet...

متن کامل

Self-Concordant Barriers for Convex Approximations of Structured Convex Sets

We show how to approximate the feasible region of structured convex optimization problems by a family of convex sets with explicitly given and efficient (if the accuracy of the approximation is moderate) self-concordant barriers. This approach extends the reach of the modern theory of interior-point methods, and lays the foundation for new ways to treat structured convex optimization problems w...

متن کامل

Self-concordant Tree and Decomposition Based Interior Point Methods for Stochastic Convex Optimization Problem

We consider barrier problems associated with two and multistage stochastic convex optimization problems. We show that the barrier recourse functions at any stage form a selfconcordant family with respect to the barrier parameter. We also show that the complexity value of the first stage problem increases additively with the number of stages and scenarios. We use these results to propose a proto...

متن کامل

Interior-point Algorithms for Convex Optimization Based on Primal-dual Metrics

We propose and analyse primal-dual interior-point algorithms for convex optimization problems in conic form. The families of algorithms whose iteration complexity we analyse are so-called short-step algorithms. Our iteration complexity bounds match the current best iteration complexity bounds for primal-dual symmetric interior-point algorithm of Nesterov and Todd, for symmetric cone programming...

متن کامل

Constructing self-concordant barriers for convex cones

In this paper we develop a technique for constructing self-concordant barriers for convex cones. We start from a simple proof for a variant of standard result [1] on transformation of a ν-self-concordant barrier for a set into a self-concordant barrier for its conic hull with parameter (3.08 √ ν + 3.57)2. Further, we develop a convenient composition theorem for constructing barriers directly fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 99  شماره 

صفحات  -

تاریخ انتشار 2004